IMPACT: International Journal of Research in Applied, -
Natural and Social Sciences (IMPACT: IJRANSS) — (e e o~
ISSN(E): 2321-8851; ISSN(P): 2347-4580 |! H l ﬂ H\J &l { . |
Vol. 3, Issue 1, Jan 2015, 121-132 & — -

© Impact Journals N |

-
L <

A COMPARATIVE ANALYSIS OF SCHEDULING ALGORITHMS

AJALA FUNMILOLA A, FENWA OLUSAYO D & ALADE MODUPE O
Department of Computer Science and Engineeringpkad\kintola University ofTechnology, Ogbomoso, Blig

ABSTRACT

Time management is an important factor highly cde®d in any organization or system because it goesy
long way in determining productivity. In the ligbf this, software engineers using the schedulee halen series of
measures in designing systems that will processcantplete jobs assigned to them in a predictablpagaable time in
order to increase the number of jobs processearpetime. Decisions that the scheduler makes, eoniag the sequence
and length of time that processes may run are &} enes, as the scheduler has only a limited an@funformation
about the processes that are ready to run. Howenttrthe use of appropriate scheduling algorithimgortant goals such
as interactivity, effectiveness, cost and most irtgrdly time can be balanced. In this work, threkesluling algorithms
were considered, first-in-first-out (FIFO), rounsbin and shortest job First algorithms. A theowdtanalysis that subject
the algorithms to the same condition is perforntedugh the use of exemplary job processes to daterthe best among
the algorithms. Job completion time, response tand permutation time were evaluated and it wasogm®d that

shortest job first gives the optimal performancsafeduling processes followed by round robin asty FIFO.
KEYWORDS: Comparative Analysis, Scheduling, Single Tape C@senpletion Time

1. INTRODUCTION

In computer science, looking at some computing gsecit will be noticed that it spends some timeceing
instructions (computing) and then makes some Ifest, for example, read or write data unnecegdariger. After that,
it executes more instructions and then, again,sa@it I/O. The period of computation between I/Ouesis is called the
CPU burst. Some processes perform a lot of inptglgwoperations but use little CPU time (examplesvaeb browsers,
shells and editors). They spend much of their fimtie blocked state in between little bursts ahpatation. The overall
performance of these 1/0 bound processes is comstrdy the speed of the I/O devices. CPU-boundegsses and spend
most of their time computing and execution timdaigely determined by the speed of the CPU andatheunt of CPU
time they can get. [1]. As work goes on in a corapuglystem there are series of other processesngitmo, e.g. VLC
media player, some few games and some online sddadt of the time, these processes collectivedyuming less than
3% of the CPU. This is not surprising since mosthafse programs are waiting for user input like dhenes, a network

message like the search, or sleeping and wakirgetipdically to check some states.[4]

Consider a 2.4 GHz processor. It executes apprd&lyn&,400 million instructions per second. Hentle
process of switching the processor to run a pdsigorocess when another one has to do an I/O I#pmagramming.
The process of running many processes at the samaest multitasking [1]. A list of all processesttare ready to run and
not blocked on some I/O or other system requesh ag a semaphore are kept on a ready list alserkas a run queue.
Entries in this list are pointers to the procesatie® block, which stores all information and statbout a process.

SCHEDULING therefore refers to a set of policiesl amechanisms built into the operating system tloato the orders

| Impact Factor(JCC): 1.4507 - This article can be denloaded from www. impactjournals.us |

| 122 Ajala Funmilola, Fenwa Olusayo D & Alade Modupe O |

in which the work to be done by a computer systensampleted. It can be said to be the method bytwtiireads,
processes or data flows are given access to systsources e.g, processor time, and communicataivwidths, among
others. There are lots of ways to do this and ttejyend on the goals of the designers. The prdgessduleris the

component of the operating system that is resptnfil deciding whether the currently running prseshould continue
running and, if not, which process should run néxscheduler is preemptive, if it has the abilityget invoked by an
interrupt and move a process out of a running statklet another process run. The last two eventlsd above list may
cause this to happen. If a scheduler cannot take&CBlU away from a process then it is a cooperativieon-preemptive
scheduler. Old operating systems such as WindowsoB.Mac OS before OS X are examples of such sd¢bedu
Even older batch processing systems had run-to-etimp schedulers where a process ran to termimdigdore any other

process would be allowed to run.

However, only the First in First Out algorithm (B¥ Round Robin Policy (RRB) and the Shortest Jobt F
(SJF) is examined in this paper. In section 2, eagorithm was briefly discussed and a step by gtepredure to
implement each with their respective flowcharts vgaswn. In section 3, a theoretical analysis of étgorithms is
performed through the use of exemplary job processaletermine the best among them and conclusandgawn in

section 4.
2.LITERATURE REVIEW

Scheduling algorithms are the systematic methodd urs determining the order in which series of sagkll be
performed by a computer system. When incorporatéal the operating system, it balances importanisgeach as
interactivity and dictates how much CPU time isedited to the above said processes, jobs; thrdad$§2g A good

scheduling algorithm should:
* Be fair-give each process a fair share of the Gilow each process to run in a reasonable amouithef
» Be efficient-keep the CPU busy all the time.

* Maximize throughput-service the largest possiblmber of jobs in a given amount of time; minimize #timount

of time users must wait for their results.
e Minimize response time-interactive users shouldgsee performance.

» Be predictable; a given job should take about #mesamount of time to run when run multiple timBsis keeps

users sane.

* Minimize overhead; don’'t waste too many resourdésep scheduling time and context switch time at a

minimum.
» Maximize resource use; favor processes that walwsderutilized resources.
» Avoid indefinite postponement; every process shgeida chance to run eventually.

» Enforce priorities; if the scheduler allows a presdo be assigned a priority, it should be meaninghd

enforced.

Index Copernicus Value: 3.0 - Articles can be senib editor@impactjournals.us

| A Comparative Analysis of Scheduling Algorithms 123 |

» Degrade gracefully-as the system becomes more lidasided, performance should deteriorate gradualbt
abruptly. [6]

It is clear that some of these goals are contradiclTo make matters even more complex, the scbhediges not
know much about the behavior of each process. Tdrergo help the scheduler monitor processes lamémount of CPU
time that they use, a programmable interval tinmterrupts the processor periodically (typically 6060 times per
second). This timer is programmed when the opegatystem initializes itself. At each interrupt, theerating system’s
scheduler gets to run and decide whether the diynemning process should be allowed to contiruning or whether it
should be suspended and another ready processedllnmning. This is the mechanism used for preemmcheduling.

There are three main categories of scheduling igthges which are:

e The Interactive Scheduling Algorithms, this includbe Round Robin Scheduling Algorithm, Priority &8d
Scheduling Algorithm, Shortest Process Next Aldoritand the Lottery Scheduling Algorithm.

* The batch scheduling algorithms, this include, tF€sme First Serve scheduling algorithm, Shortest Birst
Algorithm (SJF), Shortest Remaining Time Next Aligum, Lightest Response Ratio Algorithm and;

* The real time scheduling algorithms this includagTRate Monotonic Scheduling Algorithm, EarliestaDine
First Algorithm. [5]

This section reviewed the three basic algorithmsittered in this work.
2.1 First in First out Algorithm

A non-preemptive scheduling policy FIFO also kncaFIRST COME FIRST SERVED is a queues processes
in the order that they arrive in the FIFO ready wpueBasically there is a single queue of ready gsses. Relative
importance of jobs is measured only by arrival tiéhen a process enters the ready queuBGB is linked unto the tail
of the queue. Processes that arrive while anothéeing served wait in line in the order of arrivBhe order is very

important for the turnaround-time.

With first-come, first-served scheduling, a procedth a long CPU burst will hold up other procesddsreover,
it can hurt overall throughput since I/0O on proessi the waiting state may complete while the GUnd process is
still running. Now devices are not being used difety. For increasing throughput, it would haveebegreat if the
scheduler instead could have briefly run some I6@0nd process that could request some I/O and Baitause CPU
bound processes don't get preempted, they hurtaictige performance because the interactive proeemst get

scheduled until the CPU bound one has completed.
A general algorithm for First in first out policg described below;
Step 1: Input n, the number of jobs in the array
Step 2: Input all the times i.e. t1, t2....tn into the array
Step 3: Settheindex|toli.edj

Step 4: Repeat the following steps as long as i= n

Impact Factor(JCC): 1.4507 - This article can be denloaded from www impactjournals.us

| 124 Ajala Funmilola, Fenwa Olusayo D & Alade Modupe O |

Step 5: i«—i+1
Step 6: Print out t[i]
Advantages of First in First out Algorithm
» ltis also intuitively fair (the first one in lingets to run first)
» ltis the simplest form of scheduling algorithm.

» Since context switching only occur upon processgmination and no recognition of the process quisue

required, scheduling overhead is minimal.
* The lack of prioritization means that as long asrg\process eventually completes, there is no stiarv.
e Itis more predictable than most other schemesuseck offers time.
e The code for FIFO is simple to write and understand
Disadvantages of First in First out Algorithm

* The greatest drawback of first-come, first-servelgesluling is that it is not preemptive. Becaus¢hd, it is not

suitable for interactive jobs.
e The importance of a job is measured only by thiza@rtome (poor choice).
e Turnaround time, average waiting time and resptinge can be high for the same reason above.
* No prioritization occur, thus this system has tleubeeting processes’ deadlines.
» Itis unfair in the sense that long jobs make sjuir$ wait and unimportant jobs make important omas.

The first in first out algorithm is rarely used asmaster scheme in modern operating systems lsitoiften

embedded within other schemes.
2.2 Round Robin Scheduling Algorithm

The Round Robin (RR) scheduling algorithm is desdyspecifically for time-sharing systems. It israemptive
version of first-come, first-served scheduling. ¢&sses are dispatched in a first-in-first-out sageéut each process is
allowed to run for only a limited amount of timehi$ time interval is known as a time-slice or quamt It is similar to
FIFO scheduling but pre-emption is added to swichetween processes. [3]. Typical quantum variesn fil00
milliseconds to 2 seconds. To implement RR schaduli

* The ready queue is kept as a FIFO queue of prazesse
* New processes are added to the tail of the readyeju

* The CPU scheduler picks the first process fromréagly queue, sets a timer to interrupt after thme tijuantum,

and dispatches the processes.

e The process may have a CPU burst of less than € duantum. In this case, the process itself widage the

CPU voluntarily. The scheduler will now proceedhe next process in the ready queue.

Index Copernicus Value: 3.0 - Articles can be senib editor@impactjournals.us

| A Comparative Analysis of Scheduling Algorithms 125 |

e Otherwise, if the CPU burst of the currently rurnprocess is longer than the 1 time quantum, thertiwill go
off and will cause an interrupt to the operatingteyn. A context switch will be executed and thecpss will be
put at the tail of the ready queue. The CPU scleeduill now select the next process in the readsugu

The size of the quantum time in relation to therage CPU cycle is crucial to the performance ofsystem. [4].
with round robin scheduling, interactive performamiepends on the length of the quantum and the auailprocesses in
the run queue. A very long quantum makes the algarbehave very much like first come, first sergetieduling since
it's very likely that a process with block or corafd before the time slice is up. A small quantuta the system cycle
through processes quickly. This is wonderful foteractive processes. Unfortunately, there is arrhmasl to context
switching and having to do so frequently incredse fiercentage of system time that is used on costxching rather

than real work. The overhead associated with aexbostvitch can be expressed as:
Context switch overhead = C / (Q+C).

Where Q is the length of the time-slice and C &dbantext switch time. An increase in Q increasésiency but

reduces average response time.
A general algorithm for Round robin policy is débed below;
Step 1: Input n, the number of element in the array
Step 2: Input all the numbers into array job
Step 3: Set the index | to n do
Step 4: Input jobl[i] period
Step 5: Job [i] sum: =0
Step 6: // supply the round robin time //
* Input (r time)
« Count:=0
Step 7: Repeat for i= 1 to ndo
* Jobi]
e (2) If [(sum=period) and (done<>true), then begin.
Step 8: // 'Job’, 'I', ‘of time’, ‘period’, ‘has been exaded’ //
* Count: = count + 1;
* Done: =true
Else
Step 9: Sum: = sum + r time;

Until

Impact Factor(JCC): 1.4507 - This article can be denloaded from www impactjournals.us

| 126 Ajala Funmilola, Fenwa Olusayo D & Alade Modupe O |

Step 10:Count = n
Step 11:Stop.
Advantages of Round Robin Algorithm
* Round robin scheduling is fair in that every pracgsts an equal share of the CPU.

» ltis easy to implement and, if we know the numbEprocesses on the run queue, we can know thet-wase

response time for a process.
e The algorithm is simple in nature
* It has a strict first come first serve nature
e ltis a fastimprovement over FIFO
Disadvantages of Round Robin algorithm

* Giving every process an equal share of the CPUoisalways a good idea. For instance, highly intiévac

processes will get scheduled no more frequently @RU-bound processes.
» A process may block itself before it time slice iegp.
» Poor average waiting time when the job lengthsdestical.
» Absence of priority system which means lots of [mivileged processes may starve one high privilemesl
2. 3 The Shortest Job First Algorithm

A different approach to CPU scheduling is the SHERT JOB FIRST ALGORITHM. This algorithm associates
with each process, the length of the process’ meRt burst i.e. the running time. When the CPU isilable,
it is assigned to the process that has the smalest burst. If the next CPU bursts of two processeshe same, FIFO IS
USED. The process that arrived first out of the iw@xecuted first. [5]. Shortest job first schedglruns a process to
completion before running the next one. The qudyels is sorted by estimated job length, so thatrisprograms get to

run first and not be held up by long ones.

The SJF algorithms can either be preemptive orpreemptive. The choices arise when a new progeises at
the ready queue while a previous process is stiteting. In some cases, the next CPU burst ohévdy arrived process
may be shorter than what is left of the currentlgning process. When a preemptive SJF is the chibiedll preempt the
currently running process i.e. Stop it till the exon of the newly arrived one while a non-predmgSJIF will allow the
old process to finish before the execution of thevone. The preemptive SJF is sometimes calledhbeest-remaining-

time-first algorithm.
A general algorithm for shortest job first policydescribed below;
Step 1: Input n, the number of jobs in the array
Step 2: Input all the times i.e. t1, t2....tn into the array

Step 3: initialize i< 0

Index Copernicus Value: 3.0 - Articles can be senib editor@impactjournals.us

| A Comparative Analysis of Scheduling Algorithms 127 |

Step 4: Repeat the following steps as long as | < n-1
Settheindexjtoi+ lie« i+l

Repeat the following steps as long as j< n

If x[j1< x[i]

Temp«— X[j]

X[< x[i]

X[i] « temp

Je—j+1

| i+l

Step 6: Stop.

Advantages of Shortest-Job-First Scheduling Algortim

This scheduling always produces the lowest meaporese time Processes with short CPU bursts rurkiguic

(are scheduled frequently).
It helps in knowing in advance, the minimum averagéing time for a given set of processes.

The SJF algorithm has an optimal turnaround timpeeslly if all jobs and processes are available

simultaneously.

Moving a short process before a long one decrehsewaiting time of the short process more thandteases

that of a long process. Consequently, the averaigng time is decreased.

Disadvantages of Shortest-Job-First Scheduling Algihm

Long-burst (CPU-intensive) processes are hurt witbng mean waiting time. In fact, if short-bursbgesses are
always available to run, the long-burst ones mayenget scheduled. Moreover, the effectiveness edting the

scheduling criteria relies on our ability to esttenthe CPU burst time.
It cannot be implemented at the level of short-teameduling due to the reason stated above.

In all, scheduling can be summarized to cover thestion of when to introduce new processes intcsystem,

the order in which they should run and for how lofipe part of the operating system concerned wittking these
decisions is called the SCHEDULER and the algor#ilitnuses are called the SCHEDULING ALGORITHMS.

3. RESULTS AND DISCUSSIONS

This section examined the algorithms using a paeicjob process. A way to minimize their mean ctatipn

times from a single-tape case was determined tbagermutation method and then compared the sesult

Average mean completion time case

Impact Factor(JCC): 1.4507 - This article can be denloaded from www impactjournals.us

| 128 Ajala Funmilola, Fenwa Olusayo D & Alade Modupe O |

Supposing some jobs J1 J2Jnare given, all withwia running times t1 t2..... tn respectively withiagse
processor serving them. The question then arisés te best way to schedule this job in order toimmize the average

completion time. In this entire section, non-pre&ugpscheduling shall be assumed i.e. once a jshaited, it must run to
completion.

The assumed four jobs with their associated runtimgs are shown in the table below:

Table 3: Four Jobs and their Associated Running Tiras

Job | Run Time
J1 15
J2 8
J3 3
J4s 10

Table 4: FIFO Queue

Job | Run Time | Execution
J1 Tl First
J2 T2 Second
J3 T3 Third
J4 T4 Fourth

Table 5: Round Robin Queue

It is known from the above table that provided dines before J2 and J3 comes before J4, then Xedsited
first, followed by J2, then J3 and lastly J4.

J1 J2 J3 J4
First -1 i i i
Round) -1 i i

- - t3-1 -

- - - t4-1
Second
Round t1-2 - - -

- t2-2 - -

- - t3-2 -

- - - t4-2
Repeat t1=0| t2=0| t3=0|t4=0
until

Round Robin services a process only for a singntium of time although in the order of arrival. Bage each
process is to be serviced for 1 second beforantésrupted, then the procedure is as statedbie taelow.

Table 6: SJF Queue

Job | Run Time
J3 3
J2 8
J4 10
J1 15

The above table shows that when a process is selbeted from a ready queue the one with the stigvice
time is chosen. t3 is executed first, followed By then t4 and lastly t1.Having considered theke, tbtal cost was

determined(i.e. the completion time of the schegjulising equation 1.

| Index Copernicus Value: 3.0 - Articles can be senib editor@impactjournals.us

| A Comparative Analysis of Scheduling Algorithms 129 |

C = £ (n-k+) @

Where n is the number of jobs, k is the numberritep of arrival or execution and t is the runtirkeasible

permutation of the jobs was performed to deterrttieerequired ones.

First, let the permutation be within the rangeof i1, i2, i3........ i24, where is the feasible solution as stated

below, solvingd! , we have;
11: t1,t2,t3,t4 i7: t2,t1,t3,i13;t3,11,12,t4
12: 11, t2, t4, t3i8: t2, t1, t4, i14: t3, t1, @
13: 11, t3, t2, t4 i9: t2, t3, t1, t4i15: t3, &, t1
14: 11, t3, t4, t2 i110:t2, t3, t4, t1 i16: t3, 14, t4
I5: t1, t4, t3, t2 i11: t2, t4, t3, 11 i17: t3, ¥4, t2
16: t1, t4, t2, t3i12: t2, t4, t1, t3 i18: 13, t2, t1

From above, il: t1, t2, t3, t4dis for FIFO and ROURDBIN which queue processes in order of arrival tred
processes did arrived in the order J1, J2, J3 dndlthough RR assigns a fixed quantum of time #@cheprocess’
execution, while i15: t3, t2, t4, t1 is for SJF welniselects the process with the shortest servige for execution first.

The processes had short service times in the dRjel2, J4 and J1.
For FIFO and ROUND ROBIN, we get the average mesmnptetion time using equation 2.
Cti= £ (n-k+1) ti 2

Where k = 1, 2, 3 and 4 while ti = t1, t2, t3 adddspectively. Table 5 shows FIFO and Round relith their

cost.

Table 7: FIFO, Round Robin and Their Costs

Job Time Cost
J1 15 60
J2 8 24
J3 3 6
J4 10 10
Completion Time 100

The table above gives us the average mean complatie:
Ctl = £ (4-1+1)15=60

Ct2=£ (4-2+1)8=24

Ct3 = £ (4-3+1)3 =6

Ct4= £ (4-4+1)10=10

The average mean completion time is

(ctl+ct2+ct3+ctd)/4

Impact Factor(JCC): 1.4507 - This article can be denloaded from www impactjournals.us

| 130 Ajala Funmilola, Fenwa Olusayo D & Alade Modupe O |

(60+24+6+10)/4 = 25

The table above shows that for SJF, The first joislies in til, the second job finishes after titi2; the third
finishes after til + ti2 + ti3 and the fourth fihiss after til + ti2 + ti3 + ti4.

Table 8: Shows SJF and Its Cost

Job Time Cost
J3 3 12
J2 8 24
J4 10 20
J1 15 15
Total Completion 7
Time
Using equation 3
Cil5 = £ (n-k+1) ti 3)(

Where k =1, 2, 3 and 4 while ti = t3, t2, t1 aAddspectively,
Ct3=£ (4-1+1)3=12

Ct2=£ (4-2+1)8=24

Ctl = £ (4-3+1)10 =20

Ctd= £ (4-4+1)15=15

The average mean completion time is

(ct3+ct2+ctl+ctd)/4

(12+24+20+15)/4 =17.75

It has been shown from above that the shortedfijstalgorithm has the lowest mean completion tidwed since
completion time determines the response time, toumal time and throughput; all which are very intpot qualities of a
good scheduling algorithm, it can be concluded that best of the three compared algorithm is thartekt job first

scheduling algorithm in terms of time and cost
» Single Tape Case

Assuming there are n programs that are to be summexdcomputer tape of length L. associated witth gasogram

lis a length liand i <n.

Clearly, all programs can be stored on the tapeiged the sum of the length of the programs doé¢€rceed L.
we shall assume that whenever a program is tothiewed from this tape, the tape is initially pasied in front. Hence, if
the programs are stored in the order I= i1, i2.....the time t1 needed to retrieve a particular progipis directly
proportional to n (tj). To achieve the optimal stge on a tape problem, we are required to findrengiation for the n
programs so that when they are stored on the tapthis order, the Mean Retrieval Time (MRT)is miided.

And minimizing the MRT is equivalent to minimizirig

Index Copernicus Value: 3.0 - Articles can be senib editor@impactjournals.us

| A Comparative Analysis of Scheduling Algorithms 131 |

For instance, let n i.e. the no of programs to tueed = 3 and (I1, 12, I13) are associated with (&, t3).

There are n! = 6 possible orderings. These ordsi@amgl their respective Retrieval times (C) arehertable below:
Let the orderings of the permutation be i1, i2,.i36, we have the resulting values
11=(1,2,3),i2=(1,3,2) ,i3=(2,1,3) , i4=(1,3,4ib= (3,1,2) and i6= (3,2,1).

The optimal ordering can then be determined siheeone that has the minimum MRT can be calculaggu

C=£ (n-k+1) li

Table 9: Shows the FIFO (i1) Permutation Ordering

chosen.

Length | Time Cost
L1 5 15
L2 10 20
L3 3 3
TRT 38
MRT 38/3= 122/3

Table 10: Shows the SJF (i5) Permutation Ordering

Since FIFO groups jobs in order of arrival, andjttes did arrived in the order 1, 2 and 3, i1 whssen.

Length | Time Cost
L3 3 9
L1 5 10
L2 10 10
TRT 29
MRT 29/3 = 9

Since SJF groups jobs by selecting those with Huetest execution time first, we have the order &=, 2

Table 11: Shows the Round Robin (i1) Permutation Gtering

Length | Time Cost
L1 5 15
L2 10 20
L3 3 3
TRT 38
MRT 38/3= 122/3

Round Robin is just like FIFO, quantum time is eegd in this case. So il is chosen.

From the above, it can be seen that SJF givestima ordering which is i5 resulting in the lowaddRT of
9,31t is necessary to choose SJF in preference tastbeincrease the number of jobs i.e. programsetoetrieved per
time and to minimize their turn-around times as #i®ve tables have analyzed. The approach to thédrequired
permutation would choose the next program based spme optimization procedures. One possible measaould be
the C value of the permutation constructed so The next program to be stored on the tape woulthbeone which
minimizes the increase in C most. We trivially alveel that the increase in C is minimized if the tgrogram chosen is

the one with the largest length from among the rem@ programs

Impact Factor(JCC): 1.4507 - This article can be denloaded from www impactjournals.us

| 132 Ajala Funmilola, Fenwa Olusayo D & Alade Modupe O |

Table 11: Comparative Table of the Analysis

Algorithm Factors SJF FIFO RRP
RESPONSE TIME | Low High Fair

Turn Around Time Low High Fair
Throughput Maximized | Minimized | A bit minimized
Completion Time Low High High

4. CONCLUSIONS

As fascinating and as good as most of the schédideals are, it is clear that some of these ardgradictory.
For example, minimizing overhead means that jolmuilshrun longer, thus hurting interactive performanEnforcing
priorities means that high-priority processes walways be favored over low-priority ones, causimgleffinite
postponement. These factors make scheduling aféaskhich there can be no perfect algorithm. Howetlee Shortest
Job First Preemptive scheduling allows the schedoleontrol response times by taking the CPU afwasn a process
that it decided has been running too long. It hasenoverhead than non-preemptive scheduling sinbas to deal with
the overhead of context switching processes instdaallowing a process to run to completion or uttie next 1/0
operation or other system call. Therefore, the hkgirithm among the three compared is the ShaltasFirst Scheduling

Algorithm, because it gives the optimal solution $cheduling jobs.

REFERENCES
1. Mark A. Wekss, (1991), “Data Structure and Alghbrits Analysis”, University Press, Florida, USA.
2. A.E Okeyinka, (1998), “Introduction to Computerdreology”, LAUTECH Press, Ogbomosho.

3. Ellis Horoniz and SarjajSalini, (1991) “Fundamdraé Computer Algorithms”, online book dataw.ctl.com

4. Perez et Roberts,(2002), Project scheduling, usityeof California, USA
5. Munger, R, Tesfai. K (2001). “Scheduling with eaaa approach to utilizing specific algorithms”.

6. Friedman, M.A., Greene, E.J. (1972). “Fundamentdél®perating system scheduling algorithms”

Index Copernicus Value: 3.0 - Articles can be senib editor@impactjournals.us

